197 research outputs found

    Focusing: coming to the point in metamaterials

    Full text link
    The point of the paper is to show some limitations of geometrical optics in the analysis of subwavelength focusing. We analyze the resolution of the image of a line source radiating in the Maxwell fisheye and the Veselago-Pendry slab lens. The former optical medium is deduced from the stereographic projection of a virtual sphere and displays a heterogeneous refractive index n(r) which is proportional to the inverse of 1+r^2. The latter is described by a homogeneous, but negative, refractive index. It has been suggested that the fisheye makes a perfect lens without negative refraction [Leonhardt, Philbin arxiv:0805.4778v2]. However, we point out that the definition of super-resolution in such a heterogeneous medium should be computed with respect to the wavelength in a homogenized medium, and it is perhaps more adequate to talk about a conjugate image rather than a perfect image (the former does not necessarily contains the evanescent components of the source). We numerically find that both the Maxwell fisheye and a thick silver slab lens lead to a resolution close to lambda/3 in transverse magnetic polarization (electric field pointing orthogonal to the plane). We note a shift of the image plane in the latter lens. We also observe that two sources lead to multiple secondary images in the former lens, as confirmed from light rays travelling along geodesics of the virtual sphere. We further observe resolutions ranging from lambda/2 to nearly lambda/4 for magnetic dipoles of varying orientations of dipole moments within the fisheye in transverse electric polarization (magnetic field pointing orthogonal to the plane). Finally, we analyse the Eaton lens for which the source and its image are either located within a unit disc of air, or within a corona 1<r<2 with refractive index n(r)=2/r1n(r)=\sqrt{2/r-1}. In both cases, the image resolution is about lambda/2.Comment: Version 2: 22 pages, 11 figures. More figures added, additional cases discussed. Misprints corrected. Keywords: Maxwell fisheye, Eaton lens; Non-Euclidean geometry; Stereographic projection; Transformation optics; Metamaterials; Perfect lens. The last version appears at J. Modern Opt. 57 (2010), no. 7, 511-52

    Mechanical Metamaterials with Negative Compressibility Transitions

    Full text link
    When tensioned, ordinary materials expand along the direction of the applied force. Here, we explore network concepts to design metamaterials exhibiting negative compressibility transitions, during which a material undergoes contraction when tensioned (or expansion when pressured). Continuous contraction of a material in the same direction of an applied tension, and in response to this tension, is inherently unstable. The conceptually similar effect we demonstrate can be achieved, however, through destabilisations of (meta)stable equilibria of the constituents. These destabilisations give rise to a stress-induced solid-solid phase transition associated with a twisted hysteresis curve for the stress-strain relationship. The strain-driven counterpart of negative compressibility transitions is a force amplification phenomenon, where an increase in deformation induces a discontinuous increase in response force. We suggest that the proposed materials could be useful for the design of actuators, force amplifiers, micro-mechanical controls, and protective devices.Comment: Supplementary information available at http://www.nature.com/nmat/journal/v11/n7/abs/nmat3331.htm

    Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials

    Full text link
    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal invariant topological insulators. Because of limitations imposed by nature, topologically non-trivial electronic order seems to be uncommon except in small-band-gap semiconductors with strong spin-orbit interactions. In this Article we show that artificial electromagnetic structures, known as metamaterials, provide an attractive platform for designing photonic analogues of topological insulators. We demonstrate that a judicious choice of the metamaterial parameters can create photonic phases that support a pair of helical edge states, and that these edge states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure

    Observation of the Zero Doppler Effect

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.National Basic Research Program (973) of China (No. 2011CB922001), and National Natural Science Foundation of China (No. 11234010)

    Negative Refractive Index in Hydrodynamical Systems

    Full text link
    We discuss the presence of exotic electromagnetic phenomena in systems with finite charge density which are described by hydrodynamics. We show that such systems generically have negative refractive index for low frequency electromagnetic waves, i.e. the energy flux and the phase velocity of the wave propagate in opposite directions. We comment on possible phenomenological applications, focusing on the Quark Gluon Plasma.Comment: 16 pages, 2 figure

    Photo-designed terahertz devices

    Get PDF
    Technologies are being developed to manipulate electromagnetic waves using artificially structured materials such as photonic crystals and metamaterials, with the goal of creating primary optical devices. For example, artificial metallic periodic structures show potential for the construction of devices operating in the terahertz frequency regime. Here we demonstrate the fabrication of photo-designed terahertz devices that enable the real-time, wide-range frequency modulation of terahertz electromagnetic waves. These devices are comprised of a photo-induced, planar periodic-conductive structure formed by the irradiation of a silicon surface using a spatially modulated, femtosecond optical pulsed laser. We also show that the modulation frequency can be tuned by the structural periodicity, but is hardly affected by the excitation power of the optical pump pulse. We expect that our findings will pave the way for the construction of all-optical compact operating devices, such as optical integrated circuits, thereby eliminating the need for materials fabrication processes

    Elimination, reversal, and directional bias of optical diffraction

    Full text link
    We experimentally demonstrate the manipulation of optical diffraction, utilizing the atomic thermal motion in a hot vapor medium of electromagnetically-induced transparency (EIT). By properly tuning the EIT parameters, the refraction induced by the atomic motion may completely counterbalance the paraxial free-space diffraction and by that eliminates the effect of diffraction for arbitrary images. By further manipulation, the diffraction can be doubled, biased asymmetrically to induced deflection, or even reversed. The latter allows an experimental implementation of an analogy to a negative-index lens

    Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths

    Get PDF
    Propagating light beams with widths down to and below the optical wavelength require bulky large-aperture lenses and remain focused only for micrometric distances. Here, we report the observation of light beams that violate this localization/depth- of-focus law by shrinking as they propagate, allowing resolution to be maintained and increased over macroscopic propagation lengths. In nanodisordered ferroelectrics we observe a non-paraxial propagation of a sub-micrometre-sized beam for over 1,000 diffraction lengths, the narrowest visible beam reported to date. This unprecedented effect is caused by the nonlinear response of a dipolar glass, which transforms the leading opticalwave equation into a Klein-Gordon-type equation that describes a massive particle field. Our findings open the way to high-resolution optics over large depths of focus, and a route to merging bulk optics into nanodevices
    corecore